Syllabus for the subject

Of

WORKSHOP CALCULATION & SCIENCE

Under

CRAFT INSTRUCTOR TRAINING SCHEME (CITS)

(For Engineering Trades under Group V)

Re-Designed in

- 2014 -

By

Government of India Ministry of Labour & Employment Directorate General of Employment & Training

CONTENTS

SECTION	DESCRIPTION	PAGE NO.
Α	Rationale	3
В	General Information	4
С	Grouping of Trades in Craft Instructor Training Scheme	5
D	Semester wise Allotment of Time & Marks among the Subjects	6
E	Details of Syllabus	7
F	List of Tools & Equipments	11

A. RATIONALE

Success & Sustainability of any Training System depends upon given other things, availability of good quality instructors. An Instructor should possess, besides trade skills, <u>"Skills to Transfer Skills"</u>. To cope up this quality possession of core skills is imperative.

Ability to read Engineering Drawing is essential to perform a job / task of Engineering Trades. It is the skills set which enables comprehending the given job and subsequent planning to complete the task/job. Thus it is regarded as core skills for all Engineering trades.

Similarly, knowledge of basic scientific principles creates the foundation for acquiring hard skills. It is the initial/inherent knowledge set which enables analyzing the given job and subsequent detail planning. Such as selecting proper physical conditions e.g. Temperature for a heat treatment process, Material of cutting tool etc.

Similarly, ability to perform simple calculations also creates the foundation for proper hard skills. It is the inherent knowledge set which enables to analyze the given job - Quantitatively and subsequent detail planning. Such as selecting the physical conditions quantitatively e.g. speed, feed of a cutting operation.

Thus Engineering Drawing, Workshop Calculation & Science are regarded as a core skills set for acquiring hard skills in all Engineering Trades.

Recognizing this importance of the core skills, the subjects of Engineering Drawing and Workshop Calculation & Science are made integral part of all Engineering Trades for Craft Instructors Training Scheme (CITS) under NCVT.

B. GENERAL INFORMATION

1.	Name of the Course	:	Craft Instructor Training
2.	Duration of Instructor Training	:	1 Year (Two semesters each of six months duration).
3.	Subjects covered in the Semester	:	Detailed in Section - D
4.	Name of the Subject	:	WORKSHOP CALCULATION & SCIENCE
5.	Applicability	:	For all Engineering Trades of Group V (Electrician, Wireman)
6.	Examination	:	To be held at the end of each semester.
7.	Space Norms	:	Trade Theory Class room
8. 9.	Power Norms Unit strength(Batch Size)	:	As required in the Trade Theory Class room 20
10.	Entry qualification	:	NTC / NAC from NCVT in the trades of Electrical Gr. – V OR Diploma / Degree in Electrical/Mechanical from AICTE recognized Board / University.
11.	Trainers' Qualification	:	Diploma / Degree in Electrical/Mechanical from AICTE recognized Board / University. with five/two year experience in the relevant field
			Desirable: Craft Instructor Certificate in RoD & A course under NCVT.
12.	Trainer	:	One full time instructor is required for two batches. For one batch, the instructor may be out sourced/ hired on contract basis.

C. GROUPING OF TRADES IN CRAFT INSTRUCTOR TRAINING SCHEME

GROUP NO.	TRADE NAME			
Ι	Forger & Heat Treater, Carpenter, Foundry man, Pattern Maker Sheet Metal			
	Worker, ALL WELDER TRADES {Welder, Welder (GMAW >AW), Welder			
	Pipe), Welder (Structural), Welder (Fabrication & Fitting) and Welder (Welding			
	& Inspection)}, Plumber.			
II	Mechanic Motor Vehicle, Mech. Ref. & Air Conditioning, Farm Mech. & Mech.			
	Agricultural Machineries			
III	Draughtsman (Mechanical), Draughtsman (Civil), Reading of Drawing & Arithmetic			
	(RoD&A), Surveyor, Draughtsman (Architect)			
IV	Fitter, Turner, Machinist, Machinist (Grinder), Tool & Die Maker, MMTM, Operator			
	Adv. M/C Tool, Refractory Technician.			
V	Electrician, Wireman			
VI	Maintenance Mech. (CP), Attendant Operator(CP), Instrument Mechanic(CP), Laboratory			
	Attendant(CP), Instrument Mechanic			
VII	Electronics Mechanic, Mechanic Radio TV, IT&ESM, Computer Hardware & Networking			
	Maintenance.			

	SUBJECTS	Hrs./	% of	Marks	Sessional	Full	Pass Marks		
		Week	time allotted			Marks	Exam.	Sessional	Total
	Trade Practical – 1	20	50	200	30	230	120	18	138
	Trade Theory - 1	6	15	100	20	120	60	12	72
	Workshop Cal. & Sc.	6	15	50	-	50	30	-	30
First	Engineering Drawing	6	15	100	-	100	60	-	60
semester	Library	2	5	-	-				
	TOTAL for Sem I	40		450	50	500	270	30	300
	Trade Practical – 2	16	40	200	30	230	120	18	138
	Trade Theory - 2	4	10	100	20	120	60	12	72
Second semester	Training Methodology - Practical	12	30	200	30	230	120	18	138
	Training Methodology - Theory + IT	6+2	20	100	20	120	60	12	72
	TOTAL	40		600	100	700	360	60	420
	GRAND TOTAL	80		1050	150	1200	630	90	720

D. <u>SEMESTER WISE ALLOTMENT OF TIME & MARKS AMONG THE SUBJECTS FOR CITS</u>

Hourly Distribution TOTAL: 1200 marks for 2 semesters Pass marks: 720

Subject	Time in %	Marks in %
Trade Practical	45	38
Trade Theory	12.5	20
Total for Trade	57.5	58
Training Methodology	15	19
(Practical)		
Training Methodology	12.5	10
(Theory) + IT		
Total for Training Methodology & IT	27.5	29
Engineering Drawing	7.5	12
Workshop Cal. & Sc.	7.5	4
Library	2.5	-

E. <u>DETAILS OF WORKSHOP CALCULATION & SCIENCE</u> <u>Under Craft Instructor Training Scheme (CITS)</u>

Group-V

Unit	Topics	Hours	Marks
no.			
1	Units - system of units, classification of units,	8	3
	S.I.Units, Fundamental and derived units in SI		
	System,		
	Dimensions of Physical Quantities (MLT)-		
	Fundamental & Derived, Dimensionless Groups		
	(Reynolds No., Mach. No etc. their uses),		
	Accuracy, Precision and errors; Measuring		
	Instruments-repeatability & simple concepts of		
	calibration; Error analysis of measurements.		
	Metals – Mechanical properties of materials.		
	Ferrous and Non terrous metals and their alloys		
	- properties, composition and their uses.	10	2
2	Ratio and Proportions – Shop problems.	12	3
	Percentage – snop problems & applications.		
	normalizing temporing bardening case bardening		
	Mass speed velocity acceleration		
	CENTRE OF CRAVITY		
	Concept of gravity gravitational force centroid and		
	center of gravity, centroid for regular lamina and		
	center of gravity, centrold for regular solids. Examples of		
	Gravity paradox. Simple problems		
	Equations of plane motion & motion under force of		
	gravity-applications.		
	Link & Link motion – simple, complex, compound		
	links; Degrees of Freedom		
	Gear – simple, compound, epicyclic.		
	Belt & Chain		
3	FORCE AND MOTION	8	2
	Displacement, Velocity acceleration, &		
	momentum.		
	Equations of motion, Newton's law of motion,		
	Force & its derivation from Newton's laws of		
	motion – constant and variable mass situations		
	Coplanar concurrent and non-concurrent forces.		
	Resultant and components; concept of equilibrium;		
	Parallelogram law of forces. I fingle of forces,		
	Concept of moment Definition of moment of		
	inertia		
	Moment of inertia of disc. ring & sphere		
	Torque and angular momentum and their inter		
	relation		
	Totation,		

	Concept of couple Centripetal and centrifugal		
	forces		
	Free hody diagrams. Simple problems		
	Free body diagrams. Simple problems.		
	Kinematics of a wrench.		
	Newton's three laws of motion-prove that $P = m.a$.		
4	Algebra – simplifications, different algebraic	10	2
	formulae & applications.		
	Factorizations, shop problems.		
	Indices. Concept and rules. Examples on		
	indices		
	Application of Quadratic equations		
	Arithmatic Progression its ath term and sum of a		
	Anumetic Flogression, its null term and sum of it		
	terms with their applications to engineering		
	problems.		
	Geometrical Progression, its nth term and sum of n		
	terms and to infinity with application to		
	engineering problems.		
	Meaning of the terms n! (Factorial n), ${}^{n}C_{r}$.		
	Examples.		
	Binomial theorem (expansion without proof) for		
	positive integral index (expansion and general		
	term).		
	WORK POWER AND ENERGY		
	Work and its Units Measurement of work $-FS =$		
	FS $\cos \alpha$		
	Work done on hodies moving on horizontal and		
	work done on bodies moving on norizontal and		
	inclined planes (consider inclinear forces also).		
	Concept of Power and its units,		
	Calculations of power (simple cases).		
	Concept of Kinetic energy and potential energy		
	Expressions for P.E and K.E,		
	Principle of conservation of energy. Flywheel		
	Energy and environment		
	Force & weight-their units, applications.		
	Work-power-energy: definitions, units, B.H.P.,		
	I.H.P. & efficiency of an engine.		
	Vector, complex algebraic.		
	r · · · · · · · · · · · · · · · · · · ·		
	UNIT TEST - I		
5	Solving equations-simple quadratic &	12	4
	simultaneous equations transpositions etc		
	Problems on algebra-shop problems		
	VECTOR ALCERRA		
	Addition subtraction & multiplications of western		
	with applications		
	with applications.		
	Detential energy 0.12 dia 11 di		
	Potential energy & kinetic energy-applications.		
	Energy calculation in domestic & industrial		
	circuits.		
	Basic electricity-current, voltage, EMF, resistance,		

	Ohm's Law, series & parallel circuits.		
6	Mensuration – area of different triangles, square,	8	4
	rectangle, trapezium, rhombus, parallelogram,		
	circle, hollow circle, semi-circle, sector, segment		
	etc. – shop problems.		
	Hook's Law, Young's Modulus of electricity,		
	Poission's ratio-shop problems.		
	Lever – different types, working principle.		
	Moment of a lever – technical problems.		
7	Mensuration – area & perimeter of an ellipse, shop	8	4
	problems.		-
	Volume of solids & hollow bodies-prisms and		
	pyramids. Volume of cube, cuboids, rectangular		
	solids, hexagonal prism, triangular prism etc. shop		
	problems.		
	Compositions & resolution of forces. Law of		
	parallelogram of forces. Lami's theorem-shop		
	problems.		
	Specific resistance temperature co-efficient of		
	resistance applications		
8	Volume & surface area of solid & hollow cylinders	10	5
Ū	hexagonal triangular square pyramids etc	10	5
	applications & shop problem		
	Density specific gravity & Archimedes principle-		
	applications		
	Heat & temperature $-$ their units effects of heat		
	specific heat latent heat Different scales of		
	Temperature including International Practical		
	Temperature Scales (IPTS) conversions problems		
	Basic Principles of measurement of temperature		
	Specific Heat water equivalent Simple problems		
	speenie neut, water equivalent, simple problems		
	Heating effects of electric current-applications.		
	UNIT TEST - H		
9	Volume & surface area of a cone. taper cylinder.	10	5
-	solid & hollow sphere, hemi-sphere – applications		
	& technical problems.		
	. Ohm's law, Kirchhoff's law		
	Simple Problems on series and parallel circuits.		
	Concept of AC/DC. AC Induction Motors (Sauirrel		
	cage and slip ring) – uses. constructions and		
	connections		
	Starters – DOL, Star-delta, soft & VFD		
	General safety measures while handling electrical		
	machines		
	Kirchoff's Law – voltage law & current law,		
	applications in different combinations, solving		
	problems.		

10	Trigonometry – properties of triangles & acute angles. Different system of units for measuring angles. Trigonometric ratios & functions – different formulae, trigonometric proof, height & distance problems, taper calculations – technical problems. Sensible heat, thermal capacity, water equivalent of heat – applications. Temperature – different thermometric scales & conversions between them, temperature measuring instruments. Difference between heat & temperature. Thermal contact & thermal expansion – co-efficient of linear, superficial & cubical expansions – shop problems.	8	4
11	A.C. circuits – resistance, capacitance, inductance, impedance, power, power factor in R-L, R-C & R- L-C circuits. RMS value, average value. Resonance circuit – solving related problems. Calculation of line current, phase current & line voltage, phase voltage & 3 ϕ power in star & delta circuits. COORDINATE GEOMETRY :- Cartesian coordinates (two dimensions), Distance between two points. Application of equation of straight line in various standard forms, intersection of two straight lines, angle between two lines. Perpendicular distance formulae. General equation of a circle and its characteristics. To find the equation of a circle given (i) Center and radius (ii) Three points on it (iii) Coordinates of end points of a diameter. Plotting of curves y = (f(x), f(x) being algebraic function of x. Standard equation of parabola, ellipse and hyperbola (standard equations without proof), Concept of Polar coordinates & their conversion to Cartesian coordinates & vice versa,	14	8
12	Battery – battery charging, electrolysis, series & parallel group, reverse order group – related- problems. D.C. generator, D.C. motors, speed equations, alternators, polyphone induction motors-related problems. Network theory, star delta. MATRICES:- A brief idea of determinant of order three. Definition. Examples of expansion. Matrix of order m x n, Addition, subtraction &	12	6

F. LIST OF TOOLS & EQUIPMENTS

Sl.	NAME OF TOOLS / EQUIPMENTS	QUANTITY
No.		
1.	Laptop with latest configuration	1 no.
2.	Almirah steels (Major)	2 nos.
3.	Table.	20 nos.
4.	Chair	20 nos.
5.	Instructor's table (big size full secretariat)	1 nos.
6.	Instructor chair.	1 nos.
7.	LCD projector with latest configuration	1 no.

Same tool list as in the Trade Theory class room.

List of the Trade Committee Members